報告書

実施期間 2021年10月~2022年3月

バッテリーリユースのグレーディング技術実証交流インピーダンス法による高速グレーディング(劣化診断)技術検証

ヌヴォトン テクノロジージャパン株式会社

三菱自動車工業株式会社

概要

名称

バッテリーリユースのグレーディング技術実証

実施期間

2021年10月~2022年3月

開発/調査 代表者

ヌヴォトン テクノロジージャパン株式会社 バッテリー・アナログソリューションBG 戦略マーケティング部

実施者

ヌヴォトン テクノロジージャパン株式会社 バッテリー・アナログソリューションBG 戦略マーケティング部

三菱自動車工業株式会社

EV・パワートレイン先行開発部 サスティナビリティ推進部

実施内容

電池のグレーディング用アルゴリズムの最適化のためセル単体における電池の SOH と温度と SOC の関係を実電池評価によってデータ収集を実施した。 収集データからセルの劣化と Cole-Cole プロットの関係を事前調査した。

成果

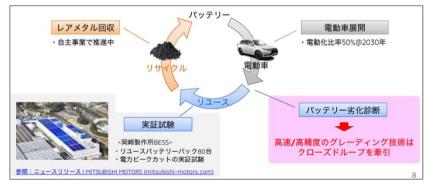
実電池評価によって、温度による RO の変化は見られるものの、SOC に対する変化は非常に小さく、RO の変化は温度と SOH の変化が支配的であった。SOH に対する SOC の依存性は低く、各温度条件での SOH と RO の関係をプロットし、SOH の算出式を作成した。結果から温度のみを補正パラメータとする SOH 推定アルゴリズムによる高速グレーディングの可能性を確認した。

2022 年は、本技術を用いたグレーディングの有効性を確認するフェーズに移行する。

バッテリーリユースのグレーディング技術実証 2021年度活動報告

交流インピーダンス法による高速グレーディング(劣化診断)技術検証

ヌヴォトン テクノロジージャパン株式会社 (NTCJ)



1. 本活動の位置づけ

脱炭素社会実現に向けたバッテリーリユースによる循環エコシステムの構築が急務高品質で利用価値が高い「電動車用電池」の高速/高精度グレーディング技術を確立する

バッテリークローズドループ取組み

電動車のバッテリー劣化診断の課題 → 高速/高精度のグレーディング技術で解決を期待

nuvoTon

専用ICによる電池状態センシング技術開発

2019年

専用ICによる交流インピーダンス(Z)測定実現 車載電池に対する選別用アルゴリズム検討開始

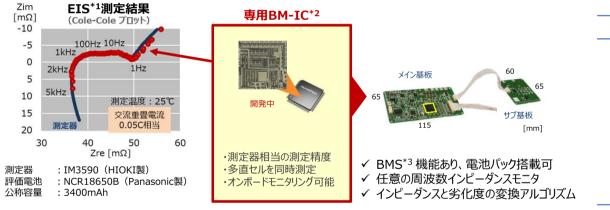
2020年

測定モジュール/チェッカに向けた基板サイズ実現

2021年~

中古車載電池モジュールのグレーディング検証開始

左挿入図:


産業構造審議会産業技術環境分科会廃棄物・リサイクル小委員会 自動車リサイクルWG 中央環境審議会循環型社会部会自動車リサイクル専門委員会 第56回合同会議 参考資料1-5(p8)

右上挿入図:

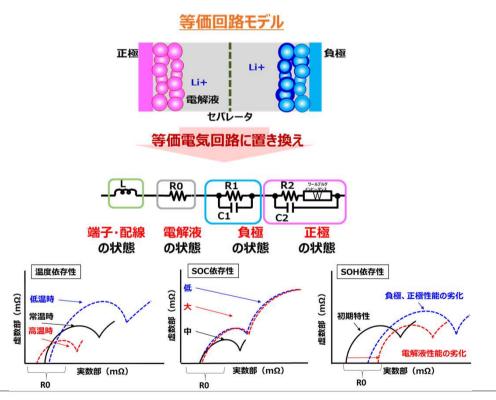
ニュースリリース、"残存価値評価を支援するバッテリーマネジメント技術を開発" https://news.panasonic.com/jp/press/data/2019/11/jn191114-1/jn191114-1.html

2. NTCJ保有技術概要 交流Z法によるセンシングと電池診断アルゴリズム

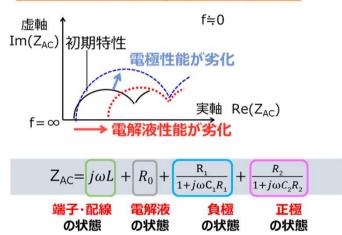
多直セルに対し同時に任意周波数の内部インピーダンス(Z)を測定できる専用ICを開発(交流Z法) 従来の方式に比べ、短時間測定、外部電源・追加装置不要、オンボードモニタが可能

状態把握	劣化度 ∞ 内部	Z 劣化度 (真値)
方式	間接法	直接法
判定時間	~1分	数時間~1日
電池負荷	③ – 約0.05C (平均)	〇 - 1C~数C
設備投資	外部電源不要	大型充放電装置

交流Z法を用いて、中古電池グレーディングへの適用を検証する


*1 EIS : Electrochemical Impedance Spectroscopy 電気化学インピーダンス分析

*2 BM-IC : Battery Monitoring IC バッテリー監視用IC


*3 BMS : Battery Management System バッテリーマネジメントシステム

3. 交流Z法と電池劣化推定アプローチ

交流Z法で得られる電池の内部Zの特徴と変化から電池劣化との相関関係を抽出 内部Z値は温度とSOCに依存するため、依存度合の検証が必要 → データマップを作成

Cole-Coleプロット (ナイキスト図) 分析

今回のグレーディング検証のターゲットは、SOH推定(電池容量診断)としている。 ただし、交流Z法で得られるCole-Coleプロット上のデータでは、電解液や電極などの電池 材料の性能劣化をインピーダンスの変化としてとらえることができるため、本来の電池劣化 診断を実現するポテンシャルを持つ。

SOC : State Of Charge SOH : State Of Health

充電率

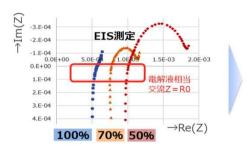
lealth 劣化度 ※現在の電池と初期電池の満充電時における容量比で定義

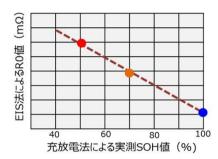
4. 交流Z法適用検証プロセス

2021年度: LEV40セルにおける、SOH・温度・SOCをパラメータとしたマッピングデータ取得

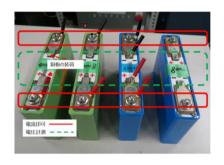
2022年度:市場から返却された中古LEV40セル/モジュールに対するグレーディング検証を実施

STEP1


- ✓ LEV40セルでSOHの異なる状態のものを準備、測定
- ✓ NTCJ測定モジュールでの測定適用の可能性を確認(精度、接続構成など)
- ✓ SOHと交流Z法による内部インピーダンスの相関性を確認

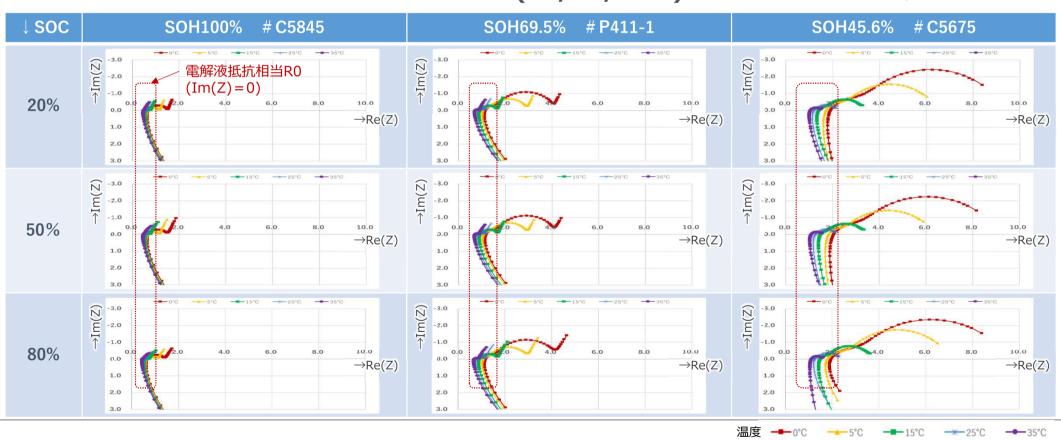

本検証は2か年計画であり、 今回の報告は、当社技術の 適用可否の確認と、実際の 劣化電池に対するSOHと交 流Z法測定値の相関性を得 るためのマッピングデータ取得と 相関式導出となる。

5. データマッピング用セルの準備


今回はSOHと相関性の高い電解液抵抗相当のROに着目、推定アルゴリズムのターゲットに選定 EIS測定値は温度とSOCとの依存性があるため、その依存度を確認する評価条件を設定した(下表)

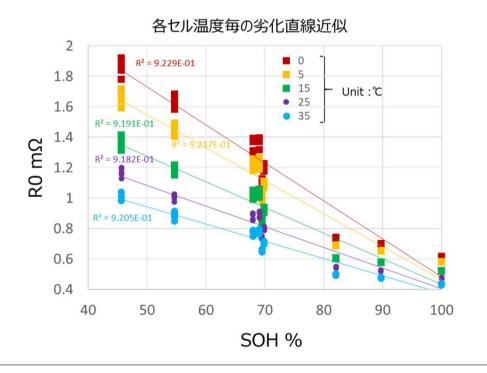
充放電法による実測SOH値

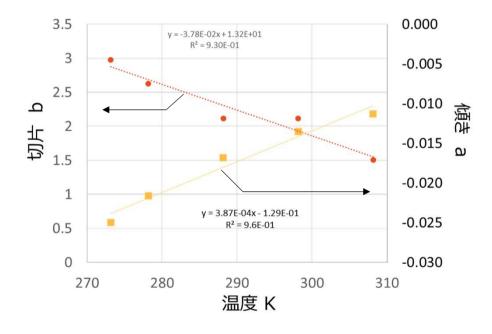
常温(25℃)、SOC50%条件下で EIS測定を実施した結果、充放電 法の実測SOH値と電解液抵抗相 当のROにおける相関関係を確認 (左グラフ)


ROは端子や配線の影響を受けるため、測定系の接続に注意が必要

→異なる端子形状においても測定値に差分がない ことを確認

↓ SOH 番号	₩ 🖰	温度→	0°C						5°C					15°C					25°C					35°C			
	留写	SOC→	20%	35%	50%	65%	80%	20%	35%	50%	65%	80%	20%	35%	50%	65%	80%	20%	35%	50%	65%	80%	20%	35%	50%	65%	80%
100.0%	C5845		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0							0	0
89.7%	M2266-1		0	H / h	グル劣化セル														▲ 各	SOHセル	の測定ボ	イント		0	0		
82.1%	M2268-1		0	リイク	ルチ1[ンピノレ)	0	0	0	0							0	0
69.5%	P411-1		0	\cap	35 0 0 0 0 0													0	0								
69.9%	P412-1		0	市場劣化セル ○ ○ ○ ○ ○ ○ ○ ○ ○ ○															0	0							
68.0%	P414-1		0																0								
69.0%	P416-1		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	//	5		0 0	0		0	0
54.6%	C5700		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			20 35	50 65	80	•	0	0
45.6%	C5675		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				SOC [%			0	0
•																											


6. 評価結果 Cole-Coleプロット(抜粋)


SOH値3パターンのセルにおける、温度とSOC(20/50/80%)をパラメータとした測定結果を示す

7-1. データ考察とSOH推定アルゴリズムへの適用

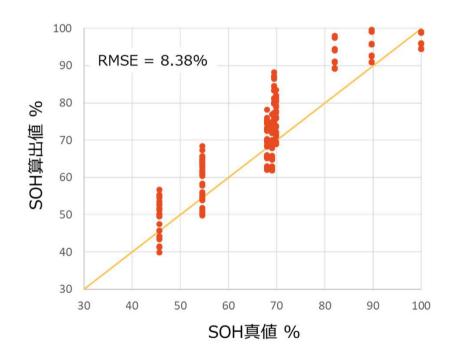
すべての測定データにおいて、電解液抵抗相当のROとSOHの相関プロットを実施各セル温度毎に劣化度の直線近似ができ(左図)、近似直線の各係数も温度補正が可能となる(右図)

7-2. データ考察とSOH推定アルゴリズムへの適用

今回実施したデータマッピングから得られたSOH推定精度は約8%であった 次年度は、さらに詳細な解析を実施、精度向上に向けてグレーディング検証を実施する

・各温度毎の ROとSOHには高い相関があり、 一次式で近似可能、例えば室温25℃では、

$$SOH_{25^{\circ}C} = a_{25^{\circ}C} * R_0 + b_{25^{\circ}C}$$

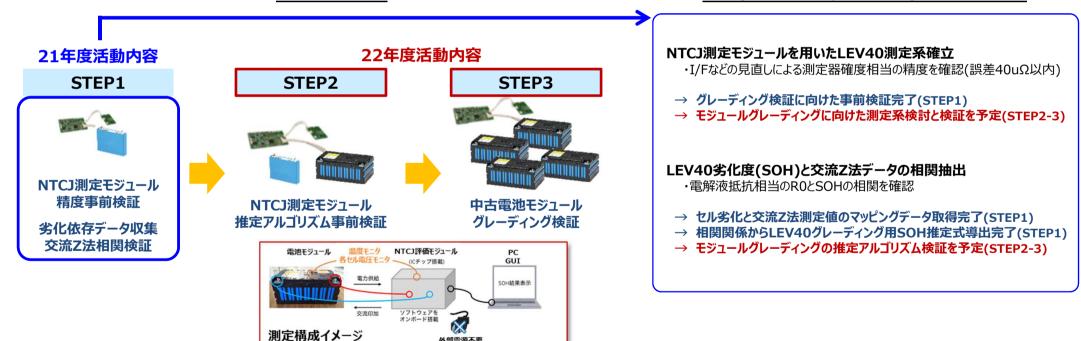

・各温度毎の一次式の係数/切片 a, b は、温度 t と高い相関があり一次式で近似可能

$$\begin{cases} a(t) = a_1 * t + a_2 \\ b(t) = b_1 * t + b_2 \end{cases}$$

・セルの温度 t を把握することで、SOHが定まる

$$SOH(t) = a(t) * R_0 + b(t)$$

・今回のマッピングデータと線形近似式 SOH(t)から 算出した値との誤差は RMSE = 8.38%



8. まとめと今後の予定

グレーディング用アルゴリズムに向けたマッピングデータ蓄積と解析、SOH推定アルゴリズムを導出 次年度からは実際の市場中古電池のグレーディング検証を実施、交流Z法の有効性を確認する

検証プロセス

21年度活動成果と22年度活動予定

外部電源不要